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We present a fast code for calculating the steady-state transport of neutral atoms in an 
axially symmetric background plasma. The primary source for the neutrals is not required to 
have any symmetry. Due to the small momentum transfer involved in charge exchange 
collisions, the secondary neutral atoms emerge with the local velocity distribution of the 
plasma ions. Some neutrals are lost due to ionization. The neutral transport is described by 
an integral equation for the neutral source. With a careful choice of a three-dimensional 
spatial grid, the small scale features of these equations can be integrated analytically to yield 
a set of algebraic equations that can be solved by only a few iterations. This results in a fast 
and compact algorithm which can be used as a subroutine in plasma simulation codes. 
Comparisons with other currently used codes and with experimental measurements show 
good agreement. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

In order to describe plasma transport processes, it is important to know the 
neutral density accurately throughout the plasma. The neutral atoms enter the 
plasma at the edge with small energies (typically a few electron volts). However, 
since charge exchange and ionization cross sections are comparable, a significant 
fraction of the cold neutrals gets replaced by hot ones which can penetrate the 
plasma much further. Due to their long mean free paths at high energies, even a 
small number of such neutrals reaching the hot central plasma can charge exchange 
and convect energy straight to the wall. In medium-size tokamaks this convective 
loss can be significant. To make meaningful comparisons of various transport 
theories with experiment, it is important to measure and calculate the neutral 
transport. For the outer regions of the plasma the radial, poloidal, and toroidal 
dependence of the neutral source can be measured using spectroscopic techniques. 
However, a direct measurement of the neutral source deep in the plasma is a very 
difficult experiment. Diagnostic neutral beam experiments can potentially yield 
some information, but to interpret them it is essential to know the relative contribu- 
tions to the signals coming from the primary and the secondary (halo) neutrals. 

The neutral transport problem is similar to neutron transport. The earlier work 
was mainly analytic in which existing solutions for neutron transport were adopted 
and extended [l-4]. However, for plasmas with arbitrary density and temperature 
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profiles, one has to use numerical techniques. The first such codes develope 
[S-l l] were mainly non-stochastic, one-dimensional codes to be used in one- 
dimensional plasma transport calculations. The development of two-dimensi 
and three-dimensional plasma transport codes along with the desire to inc 
more physical processes motivated the use of Monte-Carlo techniques [12-la]. 
existing neutral transport codes have been nicely summarized by Te er and 
Weifetz l-171 (many of them have been published in J. Comput, Physics). ey ah 
give a table of various modeling problems and the necessary geometries, fro 
which it can be seen how the choice of a neutral code is dictated by the type of 
transport simulation. The Monte-Carlo codes such as DEGAS [I?] make almost 
no simplifying assumptions and are therefore expensive to run. At the other end are 
the fast codes such as ANTIC [9] or SPUDNUT [7 J, which assume some 
symmetry (cylindrical or slab) for the source and the plasma. Between these two 
alternatives is an area where one can sacrifice some detail in the physical 
while retaining the higher dimensionality. Since the actual neutral source in most 
machines does vary both poloidally and toroidally (although the plas 
toroidally symmetric), there is considerable incentive for developing a c 
somewhere in between and can be used by plasma simulation codes as a s~~br~u~~~~. 

The code NUT (neutral transport) described here tries to fit in this region. It is 
accurate, compact, and fast enough to be used in three-dimensio~aI s~rn~~at~~~s of 
axially symmetric plasmas (with any cross section) with an arbitrary external 
source of neutrals (such as an uneven source from the walls, or a diagnostic neutral 
beam, or a divertor). The compactness and the speed are achieved by ~b~~rv~~~ 
that in many problems of interest the plasma parameters (such as the ion density 
and temperature) vary only slowly over lengths of the order of the mean free paths 
of the neutrals. Hence, by carefully identifying the smallest relevant scale length in 
the problem and analytically integrating out all smaller scale features, one can 
the rmmber of grid points small and still get accurate answers 

The next section describes the basic integral equation used in the pro 
the corresponding assumptions. In Section 3, we show how a proper choice of 
spatial grid points along with a carefully chosen averaging process turns t 
integral equation into a small set of algebraic equations which can be sol-v 
quickly in a few iterations. Finally, in Section 4, we compare our results with other 
codes and with experiments. 

2. THE BASIC EQUATION AND TKE ASSUMPTIONS 

We start with a given plasma column whose density and temperature are 
independent of the toroidal position (z). The plasma can have any arbitrary cross 
section. Neutrals injected into the plasma from various external sources are either 
lost due to ionization (from electron or ion impact) or change their energy .an 
momentum due to a charge exchange process. We denote by the sours 
total number of neutrals produced per unit volume per second at the 
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energy E. This source consists of the externally introduced primary wall and beam 
neutrals d’(r, E), and the hot secondaries created at r by neutrals coming from all 
other points 

&r, E) = d”(r, E) + 1 d3r’ dE’ G(r, r’; E, E’) d(r’, E’), (1) 

where G(r, r’; E, E’) is the probability that a neutral born at r’ with energy E’ will 
go unaffected to r and charge exchange into a neutral of energy E. For a given 
external source tie, the solution of the linear equation (1) represents the net source 
4, from which all other quantities of interest can be calculated directly. 

Like all other codes mentioned in this paper, our calculation of the neutral 
source is perturbative, i.e., the effect of the neutrals on the plasma is not calculated. 
Hence the propagator G(r, r’; E, E’) is independent of the source 4, and shares all 
the symmetries of the background plasma. In particular, it is invariant under trans- 
lations along the plasma axis (the z axis). The forms of G are different depending 
on whether the beginning and the end points are on the wall or in plasma. 
However, both forms contain the geometrical attenuation factor in going from 
r to r’: 

Go(r, r’, E) = exp( -+-, r’, El) 
47c (r--‘I2 ’ 

where 

z(r, r’, E) = jr’ P(r”, E) dr”, 
I 

(2) 

and a”‘(r”, E) is the total inverse mean free path of a neutral with energy E at the 
point r”. This total includes all possible processes that can knock the neutral out 
of its original path, viz., charge exchange or ionization by ion or electron impact. 
The charge exchange and ionization cross sections used by NUT are identical to 
those used in ANTIC. 

To convert Go into the full propagator, we have to multiply it by the initial and 
final neutral distributions. For neutrals born in the plasma in a charge exchange 
process, the momentum transfer is small. Hence the outgoing neutral has the energy 
distribution of the target ions only, while the incoming neutral energy decides the 
cross section for the charge exchange process. We assume that the ions have an 
isotropic Maxwellian distribution at the local temperature. The neutrals coming 
from the wall are assumed to have a cosine distribution in angle (corresponding to 
a diffuse source), and an energy distribution given by the reflection function 
R(E, E’), which is the probability that a neutral with energy E will be reflected from 
the wall with energy E’. Instead of the energy independent reflection coefficient used 
in ANTIC, we have used a more realistic reflection coefficient given by McCracken 
and Stott [lS]. Since the average energy of the reflected particle is given as a 
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function of (and is smaller than) the incident energy, R(E, E’) is a vector rather 
than a matrix. Depending on the location of the initial and final points, we get four 
possible forms for G: 

6, = M(r, E) aCx(r, E’) G,(r, r’), (4) 

G,,,%, = M(r, E) cP(r, E’) Go(r, r’) cos($(r, r’)), (5) 

G,, = R(E, E’) cos(d(r, r’)) G,(r, r’), (61 

G,, = R(E, E’) cos(O(r, r’)) G,(r, r’) cos(O(r, r’)), (7 

where G,, denotes the propagator going from h to a, the subscripts p and w stand 
for the plasma and the wall, aCx(r, E’) is the charge exchange inverse mean free path 
for a neutral of energy E at the point r, d(r, r’) is the angle between the ray joining 
the points r and r’ and the normal to the wall at the proper end of the ray, and 
M(s, E) is the Maxwellian with the ion temperature at the point r. 

The external source qS’(r, E) comes either from the wall, which provides a diffuse 
source of cold, low energy neutrals (0.1 to 20 eV), or from other sources such as the 
high energy diagnostic neutral beam which creates first generation neutrals via 
charge exchange with plasma ions. For more complex configurations, any arbitrary 
external sources can be introduced on the wall or in the plasma. 

Symbolically, Eq. (1) can be written as 

Due to the exponential attenuation factor in G, the norm of GI# (defined in some 
averaged sense) is smaller than the norm of 4, allowing us to use iteration to solve 
Eq. (1) with 4” as the initial guess 

4=4°+G40+GG40fG~~40+ . . . . (9) 

Each iteration corresponds to a new generation of neutrals, i.e., at the nth step, we 
get the effects of n successive scatterings of a neutral either in plasma or on the waif. 
This is completely equivalent to using a linear equation solver which inverts the 
matrix Cl - 61. Since the ionization and charge exchange cross sections are com- 
parable, the iteration converges reasonably fast. For a small matrix G (with small 
number of grid points, as in ANTIC) iteration is slower than the linear equation 
solver. However, when the number of grid points is large, the iterative te~~~~q~e 
works much faster. 

Since the forms of G depend on whether the two pomts are on the wall or in the 
plasma, we separate Eq. (8) into 
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We can formally eliminate the wall source $w by solving the second equation, and 
substituting the result into the first one to obtain 

4, = 4,” + G,,U - G,,) -’ 4:> + (G, + G,wU - Gw,) -’ Cup) dp. (12) 

Note that this equation is almost the same as in ANTIC, except for the (1 - G,,))’ 
factor in front of the external wall source 4 “,. This factor would make no difference 
if the reflection coefficient at the wall were set to zero. However, for non-zero 
reflection coefficient, ANTIC is expected to give a slightly larger penetration than 
the correct answer. 

3. THE METHOD OF COMPUTATION 

In order to numerically solve Eq. (1) we choose spatial and energy grids, and 
write it in a discretized form as 

d(i) = 4’(i) + c Wk A c4A (13) 

where the index i is used to collectively denote the position and energy bin over 
which the continuous quantity is averaged. The sum in this equation extends over 
both the .plasma and the wall points. Since the energy dependence of the source 4 
in the plasma is always given by the normalized local Maxwellian function M(r, E), 
we can factor it out to define a reduced source I/J in the plasma 

dr, E) = $(r) JOi El. (14) 

Using this in Eqs. (10) and (1 l), we get 

$(i) = 11/O(i) + c G,G, A $,(A + j&j c G,,,k .A E’) ALi E’h (15) 
plZiSlX3 ’ wall 

for points in the plasma, and 

AA& ~3 = d”,(i, E) + c G,(C A $,(A + c G,,(i> .L E, E’) A,G E’). (16) plWlX3 wall 
for points on the wall. All energy dependence disappears from the sum over plasma 
points, which now runs over only the three-dimensional spatial volume of the 
plasma. The wall point sum still runs over the two-dimensional wall surface and the 
one-dimensional energy grid. The Green’s functions used in these equations are the 
discretized forms of the ones in Eq. (4)-(7). The indices i and j denote the positions 
of the target and the source grid points. The exact procedure to go from the con- 
tinuum forms (4))(7) to these discretized forms will be spelled out in the remaining 
part of this section. 
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Numerical calculation of the three-dimensional sum in Eq. (15) requires a lot of 
care because of the singularity in G at short distances. Of course, the integral is con- 
vergent, but its discretized form can be subject to problems unless this divergence 
is explicitly cancelled by the volume element. This can only be done if the interval 
is performed over the relative co-ordinate s = r -6. Each source point can now be 
denoted either by its absolute location r’, or by its location relative to the target 
point r, viz., by (r, S, o), where r is the target point, a> labels the direction of the 
ray from the source to the target point, and s is the distance between the two points 
along the ray. To avoid confusion, we shall use X(r, s, up) instead of I# to denot 
source at r’ written in the relative co-ordinates. The three-dimensional int 
over source points r’ for each target point r can in general be written as 

I(r) = j s* ds dw 
exp( -j ds’ a““(~, s’)) 

4ns* x(r, s, WI, 

in which the troublesome factor s* cancels. We first carry out the integration over 
s along a ray starting from the target point, and then average the answer over aDY 
rays. Over each ray, the s integral has the form 

I(r, w) = jam ds exp ( - jS ds’ cP(s, s’) ~(r, s, w). ins1 
0 

To be able to do this without extra interpolations, at a.very target point the source 
points must lie on rays starting from the target. This forces us to choose a spatial 
grid which looks identical from every target point, i.e., a lattice. A convenie 
choice is the cubic lattice. At each point, we have 26 rays going to the 6 faces, 
12 edges, and 8 vertices of the cube surrounding that point. These give us 
angular resolution. In addition, since each bin in the lattice has the same v 
over which the source is averaged, we can use the lattice spacing 6 as our 
length. This saves us many multiplications and divisions by 6 in the program. 

To achieve high calculational speed we must decrease the total number of points 
needed, i.e., choose as large a 6 as possible. To do this, we note that there are two 
distinct length scales in the problem. The propagators die off over length scale 
the order of the mean free paths (varying from 0.01 to 100 cm depending on 
energy), but the mean free paths themselves change very slowly over length 
comparable to the plasma size (about 5 cm). We can use the larger length SC 
the grid spacing if we manage to analytically do the integrals over one grid size. 
This is in fact possible. To see this, consider the typical integral in Eq. (18). If we 
label the points on the ray by an index i starting with 0 for the target, the integral 
becomes 

I- 1 

I(r, w) = 1 IAr, 01, 

i=O 
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where I is last point on the ray and I,(w) is the integral between the ray points i 
and ii- 1. Each of these integrals between two successive points on the ray can be 
done analytically if we approximate the slowly varying quantities such as the source 
4 and the inverse mean free path atot by polynomials over this interval. In fact, a 
first order expansion is quite adequate, though for greater accuracy the expansions 
can be carried to higher orders. All the pieces I,(r, o) are then summed up in 
Eq. (19) to give the integrals I(r, o) along each ray, which are finally averaged over 
the 26 directions. In the resulting expression the sources d(j) appear linearly, multi- 
plied by functions of plasma parameters which are just the discretized propagators 
G,,(i, j) of Eq. (15). Since these propagators are indepedent of the source, they need 
to be calculated only once before the iteration begins. 

This scheme is also well suited for calculating the wall-to-plasma, plasma-to-wall, 
and wall-to-wall propagators, which involve two-dimensional integrals over the 
wall surface. For each plasma point, we find the nearest point on the wall, calculate 
the integrals over four (or eight) rays starting from that point, and then add them 
up. The integral over each ray is broken up into pieces going from one wall point 
to next. Within each piece, the mean free paths and the sources are expanded in 
polynomials and the integral is done analytically. This is possible for any given 
local curvature of the wall (in each direction). Again, the resulting expressions are 
linear in sources, and so the discretized propagators can be identified. This is 
important, since otherwise we cannot write the equations in the form (15F( 16). The 
summations at all the target points in these equations can be vectorized, or done 
paralally, resulting in a very high speed. 

Details of all the propagator calculations are given in Appendix A. We have 
tested this scheme to calculate some exactly solvable integrals in which the grid size 
varied between 0.1 to 10 times the mean free path, and the answer was accurate to 
within a few percent. Since the time and memory requirements increase as the sixth 
power of the inverse grid size, without this fast integration scheme this code could 
not have met the demands of high speed and small memory. 

A further small increase in speed results from restricting the integration volume 
to include only the source points that lie within a few mean free paths of the target. 
This reduces one of the dimensions of the G(i,j) matrix and speeds up the 
iterations without noticeable loss of accuracy. In addition, one could use extra sym- 
metries (such as top-bottom, or cylindrical) of the plasma (not of the source) to 
speed up the propagator calculations. However, this does not reduce the main time 
consuming part-the iteration time. It also adds extra code and makes the program 
less general. In any case, when used in a time-stepping plasma simulation code, the 
propagators need to be recalculated only when the plasma changes substantially, 
which is not at every time step. For these reasons, we have not added any 
symmetry restrictions on our code. 

In order to run the code, a suitable grid constant is chosen, and the plasma is 
fitted in a three dimensional box. The plasma and the wall shape are specified. Since 
the wall-to-plasma propagators are treated separately, the wall points need not lie 
on the cubic grid. They are chosen on the wall surface to give adequate resolution. 
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For example, for the TEXT [ 191 tokamak with a wall minor radius of 30 cm, the 
choice of a grid constant of 5 cm and a grid of 32 equally spaced poloidal an 
toroidal wall points is quite adequate. The program preprocesses all this geometri- 
cal information to generate a compact subroutine with most of the geometry 
hardwired into it. This saves a lot of computer memory and speeds up the execution 
since all the geometry need not be recalculated every time the code is run. Given 
the plasma profiles and the external sources, this snbroutine calculates the neutral 
source d(r) at all points in the plasma and on the wall. From this, the various 
quantities of interest such as the neutral density, the rate of change of plasma 
particle and energy densities, the average energy of neutrals, and the neutral flux at 
the wall are easily calculated. 

4. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENT 

As a first step, we compared the results of our code (NUT) with ANTIC (w 
in turn has been compared with other codes in Ref. c93) for the cylindrically sym- 
metric case with zero reflection coefficient over a wide range of plasma parameters 
and sizes. For the comparison, the Maxwellian was collapsed to a delta function at 
3/2T. Energies of the cold neutrals coming from the wall were set to the same 
nominal values of 2 and 20 eV in both codes. The fluxes at the two energies were 
set equal. Since both NUT and ANTIC are linear in the source, the wall sources 
have to be given from outside, i.e., these codes themselves do not contain any 
physics that specifies the input neutral flux at the wall. After setting everything iden- 
tical in the two codes, we get good agreement for all the cases we have tried. Some 
of the comparisons for different central plasma densities are shown in Fig. 1. For a 
tokamak like TEXT with a 30 cm minor radius, a grid constant of 5 cm is quite 
adequate. Approximately 10 iterations are needed to get good convergence. 

In the wall-to-plasma terms G,, and G,, it is important to use the correct wall 
curvature whenever it is comparable to the mean free path of the high energy 
neutrals. A flat wall does not give a good answer, nor does a slab plasma. In 
particular, the neutral source deep in the plasma comes out too small if a flat wall 
is used. In TEXT, this neutral penetration is significant because the neutral mean 
free paths are comparable to the plasma size for the high energy atoms. However: 
for larger tokamaks with less neutral penetration, the error may not be so crucial. 
In all cases, the direct wall-to-wall term is not significant due to the co?(@) factor. 
This factor is very small unless the starting and the final wall sections almost face 
each other, but then the distance between them is large. niy in geometries with 
regions of very sharp wall curvatures (such as a divertor chamber) will this factor 
be important. Otherwise we can safely turn it off ts save computational time. 

Next we compare our results with experimental measurements for the ~~li~d~i~a~ 
TEXT plasm with a more realistic non-uniform wall source which has been 
measured by owan et al. [20] using spectroscopic observations of N, emission” 
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FIG. 1. Comparison of NUT calculations with ANTIC. The neutral source 4 is plotted as a function 
of minor radius (cm). Since the equations for $J are linear, we arbitrarily normalize all sources to 1. All 
parametes are set the same for both codes. The Hydrogen plasma parameters are n, =ni= (no-n,) 
I1 - wa)21 +%, Te = (T,- Te,)Il - (~/~)*I2 + T,,, and T~=(T~o-T,,)[1-((r/u)2]2+Ti,. The 
plasma radius a is 30 cm. The temperatures are held fixed with T, = T,, = 1000 eV. All wall values are 
one-tenth of the central values. The neutral wall source is constant at all wall points. The two cold 
neutral energies are 2 and 20 eV. The wall reflection coeffkients are set to zero. 
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The experiment consists of three distinct parts. The chord averaged values of H, 
radiation at various minor radii in one toroidal plane far from the limiter is 
measured using a rotating mirror arrangement. After Abel inversion, this yields the 
dependence of the source on minor radius. The net source integrated along the 
major radius in the equatorial plane is measured by light monitors at eight different 
toroidal locations while the source at the limiter is monitored by a TV camera. The 
toroidal dependence of this integrated source is an exponential with a sharp maxi- 
mum at the limiter. It is found that these integrated measurements are consistent 
with a source of the form 

where z is the toroidal distance from the limiter, 0 is the poloidal angle, S, and S, 
are the magnitudes of the measured source at the limiter and the wall, and t 
radial dependence S,(r) has been normalized to a maximum of one (see Figs. I-4 
of Ref. [2S]). The toroidal fall-off length z0 varies from 7 to 5 cm as the density 
varies from 2 x 1013 to 6 x 10’3/cc. The ratio of the limiter to wall source varies 
between 40 and 100 for these densities. The poloidal asymmetry factor p 
between 0.8 and -0.5 depending on the plasma position. By integrating the 
form over the toroidal direction, it can be seen that with a major radius of f m, a 
value of z0 = 6 cm implies that about half the net source in TEXT comes fro the 
limiter and the other half from the wall. 

Since linear codes such as NUT require the specification of an external source, 
to simulate these conditions we assume a non-uniform external wall source which 
is bigger at the limiter (at z = 0) than at the wall and which is concentrated at the 
outer part of the wall (near 6, = 0). The physics of why the external source has this 
asymmetry is outside the scope of all these codes. The structure of the calculated 
source in one poloidal plane (the r - 13, or equivalently the x - y plane) is shown 
in Fig. 2, while its dependence on r and z is shown in Fig. 3. As can be seen from 
Fig. 2b, the poloidal cos(8) dependence can be reproduced by concentrating the 
source at the outer edge. Since the dependence of tbe external source on plasma 
position is unknown, we can only see qualitative agreement in this direction viz, 
whenever the plasma rides on the outer edge of the lim.iter, the source is peake 
the outside. However, in the toroidal direction we do not have much freedom. If we 
use a large source at the limiter (z = 0) and a small uniform source at the wall, we 
get the exponentially peaked source seen in Fig. 3b. We integrate this source along 
the major radius at different z values and calculate its decay length, which is pkott 
in Fig. 4 along with the experimental measurements at many different densities. T 
agreement of the absolute value as well as the variation with density of z0 with 
experimentally measured values is good. We also note that z0 essentially measures 
the toroidal fall-off length and is independent of the ratio of S, to S,. This 
agreement gives us confidence in the absolute values of the mean free paths, their 
variation with density, the wall deposition model we have used, and our algorithm. 

Part of this agreement may depends on the values (2 and 20 eV) used for the 
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FIG. 2. The neutral source in the z = 0 plane calculated by NUT for the same plasma conditions as 
in Fig. lb. In Fig. 2a the wall source is constant, while in Fig. 2b.it has a cos(0) dependence. 

energies of the incoming cold neutrals from the wall. In a Franck-Condon dissocia- 
tion of a molecule, we expect one of the atoms to carry small (less than a few 
electron volts) and the other a large (5 to 20 eV) energy. Since the physics of these 
processes is outside the scope of NUT and the energies and the fluxes of neutrals 
from the wall are an external input, we have tried various combinations within the 
above limits. We always set the two fluxes equal. The decay length z0 seems to be 
governed more by the higher generations than by direct deposition from the wall, 
and hence the value of z0 is not very sensitive to the wall-neutral energies. 
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(b) 

FIG. 3. The r and z dependence of the neutral source calculated by NUT for the same plasma condi- 
tions as in Fig. lb. The wall source is constant in Fig. 3a, while in Fig. 3b it is set to 50 at all points 
on the limiter (z = 0) and to 1 at all points on the wall (t> 0), which are the values suggested in 
Ref. [20] for the TEXT plasma. 

The measurements of the radial dependence of the source are Abel inverted from 
chord averaged measurements in which the small source near the center gets 
masked by the large value near the edge. The measurement is thus good only 
for the outer region of the plasma, where our calculations fit very well witb the 
experiment. The small central source, however, is- important in plasma transport 
calculations since it can lead to a large convective loss term from these neutrals 
charge exchanging with plasma ions. Given the agreement with the rest of the data, 
we feel confident about the predicted value of the source for the inner part of the 
plasma. A direct measurement of it would be very useful. 
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FIG. 4. Toroidal decay length z0 (expressed as a toroidal exponentl;ltlon angle CI~ = 180~,/(nR,~~,,) 
of the source as a function of chord averaged electron density. TEXT major radius is 1 m. The circles 
are data points from Ref. [20], while the stars are calculations from NUT. 

5. SUMMARY 

For the neutral transport problem in more than one dimension, we have shown 
that by separating the small scale variations from the large scale ones and analyti- 
cally integrating out the small scale features, one can produce an algorithm which is 
fast and compact enough to be used as part of a larger plasma transport code. The 
analytical approximation allows one to use a much coarser grid than one would be 
forced to use without it. Such a code can be useful in cases where the scale lengths 
of the charged part of the plasma do not vary a lot over different regions. It can 
also be applied to calculate the source in a reasonably small geometry, such as near 
a divertor region. It gives the plasma transport simulators a choice which is 
between the fast one-dimensional codes and the powerful but expensive full 
three-dimensional simulations. 

APPENDIX A 

In this appendix, we show the details of the evaluation of the ray integrals 
Ii(r, CD) in Eq. (19). For the plasma-to-plasma case, the integral between two points 
at distances si and sic1 along a ray in the direction CO starting from a given target 
point r is given by 
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with 

f(s) = j; ds’ at”+, s’), (A21 

where P’(s, s’) is the total inverse mean free path at s’ for a neutral born at s with 
energy equal to $kT, where T is the local ion temperature. For brevity, we have 
kept the target point and the ray direction dependence implicit, e.g., we write the 
source ~(r, S, CD) as 4(s). Expanding the slowly varying arguments to first order, we 
get 

which lead to 

li(r, 0) = Jsi+’ ds exp[I -fbJ - (s - si) f’(si)l(4(si) + (S - xi) d’(si)): (AsI 

where we denote the derivatives by a prime. These integrals can be performed easily 
to yield 

oh-, 0) =exp(-fjfi)Cc44si) + Bi4bi+ 1)1, 

where 

fi = $ y [UYS,, sj+ 1) + aysi, Si)], 
L J=O 

fi’ = ““‘(s,, si) + 2 :fl [Utot(Sj+ 1, Sj) -Uto’(sj, xi) 
J=O 

+ "ot(si+l> Sj+l)-a'"'(Si~ Sj+ l)]y JAMI 

1 
Hj=f: [I1 -ev-@“/)I, 

1 
Pi=z [IHi--exp(-8f,‘)], 

and 

581/88/l-9 

cli = Hi - 1(3 JS. 
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For the plasma-to-wall and wall-to-plasma cases, we get different expressions 
depending on the wall curvature at the wall point nearest to the plasma point. The 
surface integral over the wall is broken into integrals over four (or eight) rays along 
the wall. If we assume a flat wall, the integral over each ray becomes 

(A12) 

where Y, u, and L are the distance shown in Fig. 5a and I is the farthest point on 
the ray. Again, breaking the integral into pieces and expanding all slowly varying 
quantities to first order we get the answer as a linear combination of 4 at points 
on the ray, 

I=$’ Ii, (A131 
L=O 

Iizxidi+ yi4i+lY (A14) 

Q Plasma point 

Flat Wall Surface 

(b) 

FIG. 5. Geometry for calculation of wall-to-plasma propagators for (a) flat wall and (b) curved wall. 
The small circles correspond to plasma or wall grid points. 
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where 

1 
Yi = 

Ui+l-Ui 

and z = a”%. Here the functions E, and E2 are the exponentiai integral functions 

E,(z) = [a dtexP;;zt), 
1 

for which we use the polynomial approximations given in Ref. I]21], To spee 
the program, these can be tabulated and interpolated to required values. 

When the wall is not flat, but has a radius of curvature R, we use a similar 
procedure to obtain 

-A(exp(-z)l~+,ui-(u+~~)exp(-~)~~+,f , 1 
where x and u are the distances shown in Fig. 5b and /z = l/aio’. Note that for 
very large R this expression reduces to the flat wall case. However, when 
comparable to the mean free path, the curved wall leads to much larger ne 
penetration than the flat one. 

In the above, instead of doing the s integral first, we could have done t 
integral first by breaking up the plasma volume around the target point into 
shells. Since the volume of each shell is proportional to s2, where s is the s 
the singular l/s2 factor in the denominator in G again cancels. We could then sum 
over the shells to get the total integral. In this step, we could make use of the fact 
that the integrals over the shells decrease like exp( --s), since the plasma does not 
vary significantly over a grid length. Hence, instead of using a trapezoidal 
approximation to calculate the sum over shells (which typically gives an over- 
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estimate), we would use an exponential approximation where the integral between 
two successive shells would be given by (fi -f*)/(ln(f,) -In&)). However, the 
resulting expression is not linear in 4, and so cannot be put into the matrix form 
of Eq. (15). We therefore do not integrate over CO first. 
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